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Abstract—The Schumpeterian opportunity cost hypothesis predicts that
firms concentrate innovative activities in recessions. However, empirical
evidence suggests that innovative activities are procyclical. Theory pro-
poses that firms shift R&D investments and innovation from recessions to
booms to maximize returns by capturing high-demand periods before imi-
tators compete away rents. This paper provides the first empirical test of
these predictions. Results indicate that R&D spending is more procyclical
in industries with faster obsolescence, where matching invention to
demand is more valuable, and innovation is more procyclical in industries
with weaker IP protection, where imitation poses a greater threat.

I. Introduction

SCHUMPETER (1939) predicted that firms will concen-
trate investments in innovation in recessionary periods

because activities to enhance productivity will carry lower
opportunity costs when firm outputs are less in demand.
This view has been generalized to predict that firms will
shift resources toward productivity-enhancing activities,
such as training and reorganization, and away from produc-
tion activities in recessionary times, when the opportunity
cost of doing so is lower (Hall, 1991; Saint-Paul, 1993;
Aghion & Saint-Paul, 1998a, 1998b). Existing empirical
evidence, however, documents a pattern of R&D invest-
ment and innovation that is decidedly procyclical (Barlevy,
2007; Comin & Gertler, 2006; Fatas, 2000; Geroski & Wal-
ters, 1995; Griliches, 1990). This pattern has been attributed
to the financial constraints firms face during recessions
(Aghion et al., 2010). Indeed, empirical evidence shows
that firms’ procyclical pattern of R&D investment is in part
a reaction to the credit constraints present in recessionary
periods (Aghion et al., 2012; Ouyang, 2010). In this paper,
we build and test an alternative but complementary predic-
tion: that R&D investment is procyclical because firms stra-
tegically time their innovations to coincide with economic
booms, when higher demand makes it possible to capture
more rents than during periods of lower demand.

We use prior theoretical arguments that attributed the
procyclical pattern of innovation to firms purposefully
delaying R&D investment (Barlevy, 2007) and innovation
implementation (François & Lloyd-Ellis, 2003) until peri-
ods of high customer demand. While these models make
different key assumptions, as described in section II, the
common element driving their explanations of when firms
invest and innovate is the anticipation that disclosing an
innovation facilitates imitative rivalry. Imitation will reduce
the rents the original innovator can capture. Anticipating
this imitation, an innovating firm will maximize profits by
timing the introduction of its innovation to match periods of

higher demand. We empirically test this prediction by
examining whether firms’ R&D investments and innovation
outcomes are more strongly procyclical in industries with
weaker intellectual property protection, where imitation
poses a greater threat to the appropriation of rents from
innovation.

We also build on this theory to make predictions about
how the procyclicality of R&D investments and innovation
outcomes depends on the rate of product obsolescence in an
industry. Just as imitation erodes expected profits from
innovation, the value of an innovation decreases more
quickly in industries where the rate of obsolescence is fas-
ter. However, the effect of obsolescence is different from
the effect of imitation: imitation depends on an innovation
being introduced to competitors, but obsolescence pro-
gresses even when innovations are withheld. When obsoles-
cence progresses more rapidly, firms’ incentives change.
They now have more incentive to match R&D investment
to high-demand periods and less incentive to withhold new
innovations until the next period of high demand.

Our investigation makes three contributions to this litera-
ture. First, we empirically test whether the procyclical pat-
tern of firm investments in R&D and patented innovations
are moderated by the likelihood of imitation, as theory
would predict. Second, we diverge from the unrealistic
assumption that commercialization occurs contempora-
neously with R&D investments and examine the patterns of
R&D investment and innovation patenting separately.
Third, we extend this body of theory to make and test pre-
dictions about how the rate of product obsolescence affects
the procyclicality of R&D investment and innovation.

Based on a panel data set of 7,754 public firms (and
4,157 firms for the innovation analysis) from 1975 to 2002,
we find confirmatory evidence that R&D investments and
patented innovations are strongly procyclical. We use the
Carnegie Mellon survey data (Cohen, Nelson, & Walsh,
2000) to create measures of the strength of intellectual
property rights that protect inventors from imitation and the
rate at which an industry’s innovations are rendered obso-
lete by rival innovations. We find that R&D investments
are more procyclical in industries with faster obsolescence
and that innovations are more procyclical in industries with
weaker patent protections, even after controlling for the
extent of financial constraint in the industry. Overall, our
analysis suggests that the timing of R&D investment is
separate from decisions on innovation are separate deci-
sions, and that firms adjust innovation, rather than R&D
investment, in response to the threat of imitation.

This observation carries interesting implications for pol-
icy as well. Barlevy (2007) concluded from his theoretical
model that shifting R&D investment from periods of low
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demand to periods of high demand would increase the
social welfare cost of economic downturns, thereby justify-
ing policy initiatives to improve social welfare by encoura-
ging countercyclical R&D investment. Our empirical
results suggest these interventions may be the most neces-
sary in industries where the rate of obsolescence is fastest,
because firms in these industries have greater incentive to
delay R&D spending. Our results also suggest that firms are
less likely to shift innovation to periods of high demand
when patent protection is stronger. To the extent that new
introductions drive increases in consumption, increasing the
strength of intellectual property protection may help pro-
mote faster recovery during downturns.

The remainder of the paper is organized as follows. Sec-
tion II describes existing theories that attribute procyclical
R&D investment to a demand-matching strategy and pre-
sents four hypotheses. Sections III and IV describe our
empirical model and our data set. Section V shares and dis-
cusses our empirical results. Limitations are discussed in
Section VI. Section VII concludes with a summary of the
main findings and with suggestions for future research.

II. Theory and Hypotheses

The demand-matching theoretical explanation for the
procyclicality of R&D investment and innovation is
founded on the desire of profit-maximizing innovators to
time their innovative activities to periods of high demand:
they heavily discount future returns to innovations, so they
want to appropriate returns in periods when the potential
for returns is greatest (Barlevy, 2007; François & Lloyd-
Ellis, 2003; Shleifer, 1986). As a result, R&D spending and
innovation outcomes are shifted from periods of low
demand to periods of high demand, a result that runs con-
trary to the socially optimal pattern of countercyclical
investment in periods of low opportunity cost.

The process of generating new product introductions
involves many potentially separate activities.1 Firms engage
in research to identify problems to solve and search for
solutions. When successful, this generates an invention.
Further development, testing, refinement, design, manufac-
turing, and marketing take place before the invention is
transformed into a commercialized innovation. At some
point between an innovation’s invention and its commercial-
ization, firms often apply for a patent, which requires that
the invention be developed enough to claim usefulness (as

well as novelty and nonobviousness) and constitute the
reduction to practice. Although investing in R&D and
choosing to develop inventions into commercialized innova-
tion are separate strategic decisions, the aggregate empirical
evidence used to examine the procyclicality of innovation
has so far failed to consider them separately. We draw on
the existing theoretical literature to make testable predic-
tions about both investments in R&D and the generation of
patented innovations.

We test the demand-matching prediction by first using
existing theory to predict industry characteristics that
should be associated with a larger incentive for firms to
match innovative activity to periods of high demand and
then testing whether patterns in the data are consistent with
those predictions. Our efforts are complicated by the fact
that the theoretical models of demand matching have made
different assumptions about the separability of R&D invest-
ments and the commercialization of resulting inventions.
Barlevy (2007) assumes that R&D and innovation are con-
temporaneous because firms are ‘‘impatient’’ and introduce
new inventions immediately. François and Lloyd-Ellis
(2003) and Shleifer (1986) assume that decisions on the
timing of R&D and innovation are separate ones, so that
firms can invest in R&D to generate inventions and then
strategically delay that invention’s commercial introduc-
tion. The different assumptions result in different predic-
tions about the timing of R&D investments during the busi-
ness cycle; the predictions with respect to the timing of
innovation are consistent, and so we begin with those.

Consider first the theoretical model proposed by Barlevy
(2007), who assumes that firms commercialize innovations
immediately upon discovery, such that the timing of R&D
investments completely determines the timing of innova-
tion. Barlevy models a firm’s choice of the level and timing
of R&D investment (and hence innovation) based on
expected returns from those innovations. Innovating firms
anticipate both business cycle fluctuations and profit ero-
sion by imitative rival firms, which develop new innova-
tions based on the innovation of the focal firm.

Shleifer (1986) presents a theory similar to Barlevy’s
(2007) but focuses on the implementation or commerciali-
zation of new technologies rather than on R&D investment.
In his model, inventions are exogenously generated and
arrive at uniform intervals over time. Innovators time
implementation of an innovation to maximize expected
profits, which are limited by the entry of imitative rivals
who compete away the monopoly profits from the innova-
tion. François and Lloyd-Ellis (2003) examine both invest-
ments in R&D and the introduction of resulting innovations.
In their model, the creation of inventions (the R&D pro-
cess) is endogenous, and inventions can be stored by keep-
ing them secret, introducing the possibility of strategically
delaying implementation. Once an innovation is introduced,
knowledge about the innovation disseminates and leads to
imitation or improvements that limit the period over which
innovators capture monopoly profits. Innovators therefore

1 We will refer to inputs to innovative activities as R&D and outputs of
innovative activities as innovations. R&D is a process by which inven-
tions are generated, and innovation is a process of introducing the inven-
tions to the market, potentially including development, patenting, and
commercialization. This is consistent with the three stages of a new tech-
nology entering the marketplace described by Schumpeter (1942): inven-
tion, innovation, and diffusion. We focus on the first two of these, and
note that while Schumpeter held that innovation (i.e., commercialization
of a new product or process) may occur without a firm inventing a new
product or process, our paper will focus on innovation based on the firms’
own inventions.
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time the implementation of innovations to periods of high
demand.

In all of these theoretical models, an innovation intro-
duced into the market by a focal firm facilitates imitation
by competitors because innovations are assumed to become
public knowledge as soon as they are discovered and intro-
duced. Rival imitators use the focal firm’s innovation to
develop the next generation of the innovation. The compet-
ing innovation by a rival then competes with or replaces the
focal firm’s innovation, thereby reducing or eliminating
rents for the focal firm. Because innovators with the most
advanced technology earn greater profits, the timing of a
focal firm’s innovation has direct consequences for the tim-
ing of rent-decreasing competition from its rivals. An inno-
vating firm that anticipates an imitation will expect a lim-
ited period during which it can enjoy monopoly rents. Thus,
our primary prediction is that firms will shift innovation
toward periods of higher demand in order to maximize the
returns from innovation captured before imitators compete
away monopoly rents.

A key driver of the incentive to match innovation to
high-demand periods in these models is the anticipated ero-
sion of monopoly profits by imitators. All else equal, firms
anticipating faster imitation from rivals will have stronger
incentives to match an innovation to periods of high
demand, relative to firms anticipating slower imitation from
rivals. Faster imitation shortens the period over which a
firm expects to capture rents from innovation and increases
the incentive to match that short period to a time of higher
demand. When imitation is expected to be slow, a firm
innovating in a downturn will expect to capture rents from
an innovation through the subsequent boom period. Given
that there is some nonzero discount rate applied to future
profits, a firm facing slow imitation will have little incentive
to delay innovation to wait for higher-demand periods.

We do not have data on product introductions, which
would most closely match the idea of implementing an
innovation, but we do have systematic and comprehensive
data on the timing of firms’ patent applications. While
R&D investments determine the generation of inventions,
the decision to patent the invention is potentially a separate
strategic decision for the firm. Applying for a patent
requires development to reduce the invention to practice
and indicates a movement toward commercialization of the
invention. Because the U.S. patent system has been histori-
cally (until 2011) based on a first-to-invent criterion for
inventorship and because patent protection is for a fixed
period of time that begins with the patent application, firms
had an incentive to delay patenting until closer to commer-
cialization. Patented inventions therefore represent further
development and commercialization of an invention, bring-
ing an invention closer to implementation. The event of
patenting an invention also corresponds well with the theo-
retical importance of disclosing an invention. In the theories
described above, implementation fosters imitative rivalry
because it makes knowledge of the invention public and

accessible to rival firms. In reality, an invention is disclosed
when it is patented, so the decision to patent an invention
involves the decision to provide information to rivals.

Based on these theories, which universally posit that
firms match innovative activity to periods of high demand
in order to forestall imitation and capture greater profits, we
expect that the procyclical pattern of innovation is more
pronounced when the intellectual property protection for
patented inventions is weaker, making imitation more of a
threat. In theory, patent protection guarantees a temporary
monopoly position for innovators to appropriate returns to
their innovations, protecting innovators from the effects of
imitation. However, Cohen et al. (2000) find that the effec-
tiveness of patents in appropriating the rents from innova-
tion varies tremendously across industries. We explore
whether the reduction (increase) in innovation in periods
of downturns (upswings) is greater for firms in industries
with weaker intellectual property (IP) protection—where
the imitation of new innovations would be faster and there-
fore more damaging to the profitability of the focal in-
novation—than for firms in industries with stronger IP
protection.

Hypothesis 1: The production of patented inventions will
be more sensitive to changes in demand for firms in
industries with weaker patent protection, relative to
firms in other industries, all else equal.

A. Timing of R&D Investments

Whereas the models predict a common pattern of procy-
clical innovation, their differing assumptions result in var-
ied predictions for the pattern of R&D investment. As noted
above, Barlevy assumes that R&D and innovation are con-
temporaneous, so the incentive for firms to match innova-
tions with periods of high demand results in procyclical
R&D investments. Shleifer (1986) and François and Lloyd-
Ellis (2003) allow for a delay between R&D investment
and the firms’ strategically selected introduction of an inno-
vation. If an innovating firm can keep an invention secret
until it is introduced, and thereby delay its imitation by
competing firms, there is no incentive to shift R&D expen-
ditures to periods of high demand. We therefore examine
whether the procyclical pattern of R&D investments is
more pronounced when the intellectual property protection
for patented inventions is weaker, making imitation more of
a threat. If based on Barlevy’s maintained assumption, the
prediction is as follows:

Hypothesis 2: R&D investment will be more sensitive to
changes in demand for firms in industries with weaker
patent protection, relative to firms in other industries,
all else equal.

Note that the alternative hypothesis, that R&D procycli-
cality does not depend on the strength of patent protection,
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will hold under the alternative assumption that R&D and
innovation are separate in terms of timing. In fact, by allow-
ing investment in R&D to be decoupled from the imple-
mentation of innovations, François and Lloyd-Ellis (2003)
predict that firms will engage in more R&D during reces-
sions, making R&D investments countercyclical, and will
delay implementing the resulting innovations until boom
periods, making innovation procyclical.2

B. Obsolescence

While Barlevy (2007) credits imitation by rivals with
eroding an innovator’s monopoly profits, the critical aspect
of the theoretical model is that profits from an innovation
are expected to decrease in years subsequent to its introduc-
tion. This general idea can be extended to consider the
effect of product obsolescence on the timing of R&D and
innovation. While both imitation and obsolescence reduce
the profitability of a given innovation over time, obsoles-
cence differs from imitation because imitation is facilitated
by the focal innovation’s introduction. Imitation is therefore
responsive to the innovation timing decisions of the focal
innovator. Obsolescence is driven by collective knowledge
accumulation and technological development, and it pro-
gresses whether or not any particular innovator introduces
his or her innovations. Faster obsolescence makes a focal
innovation less profitable in the future than it is on the day
it is invented, regardless of when the innovator chooses to
introduce it.

Obsolescence therefore creates different incentives for
the timing of R&D investment and innovation. The effect
of obsolescence is to decrease the incentive to delay the
introduction of an innovation (once invented) to wait for
periods of higher demand. It therefore affects only the tim-
ing of innovation if the timing decisions with respect to
R&D investment and innovation implementation are sepa-
rate. This gives the firm additional incentive to match R&D
investments to periods of high demand in order to generate
the inventions when they can be introduced quickly and
decreases its incentive to delay introducing an innovation
(once discovered), to avoid eroding its value.

We therefore predict that in industries with higher rates
of obsolescence, firms will be less likely to delay the intro-

duction of innovations to high demand periods. When obso-
lescence is slower, firms may elect to delay the introduction
of inventions:

Hypothesis 3: The production of patented inventions will
be less sensitive to changes in demand for firms in
industries with faster obsolescence of products, relative
to firms in other industries, all else equal.

We also expect that in industries with higher rates of
obsolescence, firms will be more likely to shift R&D invest-
ments to periods of high demand:

Hypothesis 4: R&D investment will be more sensitive to
changes in demand for firms in industries with faster
obsolescence of products, relative to firms in other
industries, all else equal.

However, we note that to the extent that firms shift R&D
investments to periods of high demand when there is a fas-
ter rate of obsolescence, as predicted above, innovation pat-
terns will be explained by the timing of R&D investment.
In other words, rapid obsolescence would provide no addi-
tional incentive to shift the introduction of innovation
beyond the incentive to shift the timing of R&D invest-
ments. At the same time, when obsolescence is slow, firms
may elect to invest in R&D in lower demand periods (con-
sistent with hypothesis 4) and select the timing of innova-
tion introduction to maximize rents.

III. Empirical Methodology

We estimated two equations to determine the effect of
changes in industry demand on innovative activities. First,
we modeled firm-level patent output to estimate the effect
of changes in industry output on the number of inventions
that firms patent. Second, we modeled the annual firm-level
expenditure on R&D to estimate the impact of changes in
industry output on investments in R&D.

A. Patent Output

We adapted the empirical model of the patent production
function (Hall, Griliches, & Hausman, 1986; Pakes & Gri-
liches, 1980) to include a measure of annual industry output
to test our predictions. Given the count nature of the depen-
dent variable, we relied on the Poisson quasi-maximum
likelihood estimator (Wooldridge, 1999) to estimate the fol-
lowing equation:

E PktjXit; Zkt�1½ � ¼ exp b1RDkt�1 þ b2Xit½
þb3Mkt�1 þ st þ lk�;

where Pkt is the number of patents that firm k in industry i
applied for in year t, Xit is a natural log of output in industry
i, Zkt�1 is a vector including the natural log of R&D spend-

2 In a later paper, François and Lloyd-Ellis (2009) feature implementa-
tion delays but determine that R&D investment is procyclical. They sepa-
rate the innovative activity into three distinct stages: research activity
(R&D), matching research output (ideas) to potential applications, and
implementing ideas in the marketplace. The strategic decisions of firms
with respect to innovations as output of the R&D process are determined
by the expected returns from innovations. The authors theorize that R&D
investment is procyclical because the expected value of unmatched ideas
is highest during booms, so that entrepreneurs are dissuaded from invest-
ing in R&D during recessions. The matching of ideas to applications is
countercyclical, because forward-looking entrepreneurs who expect the
end of a recession engage in active search efforts during recessions to
match ideas to potential commercial applications. Then, having matched
the ideas to commercial applications, the entrepreneurs delay implemen-
tation until booms, when they can maximize their returns to the commer-
cialized innovations.
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ing in the previous year by firm k, RDkt�1, and Mkt�1, a set
of one-period lagged firm-level controls. The lk and sk are
the firm and year effects, respectively.

This model estimates the relationship between R&D
investments in the prior period and a firm’s output of
patented inventions in the year, consistent with prior litera-
ture. The estimated coefficient on the industry output vari-
able Xit tests whether there is a significant change in the
number of patents generated in a period as industry output
increases or decreases. A positive estimated coefficient on
Xit would indicate that, controlling for any change in R&D
spending, firms generate more patented invention when
industry output increases.3

In order to test how industry conditions (the rate of obso-
lescence and the strength of patent protection) affect the
relationship between industry output growth and the num-
ber of patents a firm generates, we interacted industry out-
put with the measures of patent effectiveness and obsoles-
cence to test our predictions.

E PktjXit; Zkt�1½ � ¼ exp b1RDkt�1 þ b2Xit þ b3Mkt�1½
þ b4Xit � Obsþ b5Xit � Pateff þ st þ lk�:

A negative estimated coefficient (b4) on the interaction of
the rate of obsolescence (Obs) and industry output would
be consistent with the expectation that patents will be less
procyclical when the rate of obsolescence is faster. A nega-
tive estimated coefficient (b5) on the interaction of the
effectiveness of patent protection (PatEff ) and industry out-
put would be consistent with the expectation that innovation
will be more procyclical with weaker patent protection.

C. R&D Investment

To estimate the effect of changes in output on changes in
R&D spending, we used a first-differenced model of R&D
investment (Barlevy 2007):

DRDkt ¼ b0 þ b1DMkt þ b2DMkt�1

þ b3DXit þ
X

st þ xkt;

where DRDkt is a natural log of first-differenced investment
in R&D by firm k in year t; DMkt and DMkt�1 are vectors of
contemporaneous and one-period-lagged, firm-level, first-
differenced controls; DXit is the change in industry output
for year t and industry i; and st are the year indicator vari-
ables. The model estimates the change in firms’ R&D
expenditures as a function of changes in firm-level charac-

teristics, such as financial measures and physical capital,
and common time effects. To the extent that output changes
are correlated across industries, the aggregate business cycle
effects will be captured by the year indicator variables. The
estimated coefficient on industry output change variable DXt

captures the extent to which firms deviate from their average
pattern of R&D growth in response to changes in industry
demand conditions after accounting for other determinants
of R&D. A positive, significant coefficient would provide
support for the expectation of procyclical R&D spending:
that firm R&D increases (decreases) in response to increas-
ing (decreasing) industry output growth.4

As with the patent output model, we interacted the output
growth variable with the industry-level indicators for obso-
lescence and patent protection. The modified model is as
follows:

DRDkt ¼ b0 þ b1DMkt þ b2DMkt�1 þ b3DXit þ b4DXit

� Obsþ b5DXit � PatEff þ
X

st þ xkt:

A positive estimated coefficient (b4) on the interaction of
changes in output and the measure of rate of obsolescence
(Obs) would suggest that change in R&D spending for a
given change in output is larger for firms in industries with
faster obsolescence than for firms in other industries, provid-
ing evidence of a more-pronounced demand-matching beha-
vior in R&D investments among firms in industries with fas-
ter obsolescence. Likewise, a negative estimated coefficient
(b5) on the interaction of changes in output and the measure
of patent effectiveness (PatEff ) would suggest that change
in R&D spending for a given change in output is smaller for
firms in industries with stronger patent protection than for
firms in other industries, providing evidence of more pro-
nounced demand-matching behavior in R&D investments
among firms in industries with weaker patent protection.

IV. Data and Variables

We combined data from four sources to create a novel
data set. We obtained industry-level annual demand data
from the NBER Manufacturing and Productivity database
(Bartelsman & Gray, 1996).5 We used results from the Car-

3 Tests for serial correlation and heteroskedasticity on the model prior
to mean-differencing confirmed the existence of both: a Wooldridge test
for autocorrelation resulted in F (1, 4139) ¼ 89.74, which corresponds to
a p-value of 0.000. This rejects the null hypothesis of no first-order auto-
correlation. A Breusch-Pagan test for heteroskedasticity produced a chi-
square statistic equal to 247,052.66, with a p-value of 0.000, which
strongly rejects the null hypothesis of constant variance. Therefore, we
used firm fixed effects and provide robust standard errors, clustered by
firm.

4 We estimated the model using OLS on level variables (before first-dif-
ferencing) and performed tests for autocorrelation and heteroskedasticity.
Tests for serial correlation and heteroskedasticity indicated evidence for
both. A Wooldridge test for autocorrelation resulted in F (1, 6823) ¼
1,858.92, which corresponds to a p-value of 0.000. This rejects the null
hypothesis of no first-order autocorrelation. A Breusch-Pagan test for het-
eroskedasticity produced a chi-square statistic equal to 6,355.65, with a p-
value of 0.000, therefore strongly rejecting the null hypothesis of constant
variance. We used OLS regression with first-differenced variables and
clustered standard errors to mitigate these issues. A Durbin-Watson test
on the first-differenced model did not indicate any substantial remaining
autocorrelation.

5 Barlevy (2007) used the same data to measure annual industry output
and noted the limitation that it includes only manufacturing industries.
Because our measures based on survey data also cover only manufactur-
ing industries, we do not supplement these output data with other data to
capture nonmanufacturing industries.
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negie Mellon survey (CMS) of R&D managers (Cohen
et al., 2000) to measure the proposed relevant industry-level
characteristics: the rate of obsolescence, and the effective-
ness of patent protection. The CMS survey sampled the
population of all R&D labs located in the United States
conducting R&D within manufacturing industries as part of
manufacturing firms in 1994. The survey sampled 3,240
labs and received 1,478 responses, for an adjusted response
rate of 54% (Cohen et al., 2000). The data were aggregated
to the industry-level6 and refer to the period 1991 to 1993,
roughly the middle of the period used in our analysis. It is
worth noting that the firms responding to the survey were
public and private firms, categorized into industries accord-
ing to the self-reported industry focus as the lab level,
whereas the firms in our analysis are only public firms (for
data availability reasons) and are considered at the firm (not
lab) level.

To construct the sample of firms to estimate the patent
model, we started with all firms listed in Compustat from
1975 to 2002. We matched the Compustat data with NBER
Patent Data (Hall, Jaffe, & Trajtenberg, 2001) based on the
unique company identifier available in Compustat (the
dynamically assigned gvkey) to develop a data set contain-
ing all patented inventions (and accompanying patent char-
acteristics) for each public, Compustat-covered company

for which patents could be identified. After keeping obser-
vations for firms that had a nonmissing number of patents
and dropping observations that had missing values for con-
trol variables, the data contained 64,236 firm-year observa-
tions. We dropped 266 observations with only one firm-year
observation per firm, and we dropped 1,166 firms (8,980
observations) due to zero patents for all years in the sample.
This provided a data set covering 747,034 patents by 4,274
firms in 117 different three-digit SIC code industries. Match-
ing further with the CMS survey to obtain industry character-
istics limited the useful data set, resulting in an unbalanced
data set of 48,477 firm-year observations reflecting 711,570
patents by 4,029 firms in 101 different manufacturing indus-
tries in 1975–2002. Table 1 provides variable descriptions
and data sources.

The data set for the R&D model was also developed
using Compustat data for all firms listed in the 1975–2002
period. We matched these firms by industry (using three-
digit SIC code) to the NBER Manufacturing and Productiv-
ity database to obtain the industry-level annual output data
for the same period. After keeping observations for firms
that had nonmissing values for R&D expenditures and the
necessary control variables for a given firm-year, the result-
ing unbalanced sample consists of 75,093 observations and
contains data for 8,165 firms in 118 different manufacturing
industries (as identified by three-digit SIC codes). Matching
the sample to the CMS survey limits the data set because
some of the SIC codes are not represented in the survey

TABLE 1.—VARIABLE DESCRIPTIONS AND SOURCES

Variables Description Level Data Source

Endogenous Variables
Delta_R&D First difference of the natural log of R&D expenditures Firm-year Compustat
NumPats Count of patented inventions Firm-year NBER Patent Data

Explanatory Variables
Delta_Cash flow First difference of the natural log of firm’s cash flow,

calculated by adding depreciation and amortization (DP) and
income before extraordinary items (EB)

Firm-year Compustat

Delta_Total Assets First difference of the natural log of firm’s total assets Firm-year Compustat
Delta_Total Liabilities First difference of the natural log of firm’s total

liabilities
Firm-year Compustat

Delta_LT Debt First difference of the natural log of firm’s long-term debt Firm-year Compustat
Delta_ST Debt First difference of the natural log of firm’s net property,

plant, and equipment
Firm-year Compustat

Delta_Capital Stock First difference of the natural log of firm’s short-term debt Firm-year Compustat
Delta_R&D_Lag First difference of the natural log of R&D expenditures,

lagged one period
Firm-year Compustat

ln R&D (lag) One-period lagged natural log of R&D expenditures Firm-year Compustat
ln Sales (lag) One-period lagged natural log of revenues Firm-year Compustat
ln Emp (lag) One-period lagged natural log of number of employees Firm-year Compustat
ln PPE (lag) One-period lagged natural log of value of property,

plant, and equipment
Firm-year Compustat

Delta_Output First difference of the natural log of industry real gross output Industry-year NBER Manufacturing and
Productivity data

ln Output Natural log of industry output Industry-year NBER Manufacturing and
Productivity data

Obsolescence Average survey response to rate of introduction of
innovations

Industry Carnegie Mellon survey

Patent effectiveness Average survey response to degree of effectiveness
of patent protection

Industry Carnegie Mellon survey

External financing Extent of industry reliance on external financing Industry Compustat

6 The survey asked R&D lab managers questions about the principal
industry for which the R&D lab was conducting research.
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data. The result is a set of 71,264 observations representing
7,731 firms in 102 manufacturing industries.

A. Construction of Variables

Patent counts. We used a count of patented inventions
in each firm-year observation, NumPats, as the dependent
variable in the innovation model. This is a standard measure
of inventive outcome for the firm. We used the application
date of the patent provided in the NBER database to assign
a time to the invention.

R&D growth. Compustat provides annual data on firm-
level R&D expenditures. We first-differenced the natural
log of annual R&D expenditures for each firm to obtain
annual R&D growth levels (Barlevy, 2007) that we used as
our dependent variable in the R&D equation (Delta_R&D).

Industry output growth. We followed Barlevy (2007) in
constructing an industry output growth measure. We
obtained nominal gross output by summing annual value-
added and materials costs for each of the three-digit SIC
industries in the sample, as provided by the NBER Manu-
facturing and Productivity database (Bartelsman & Gray,
1996). We calculated the annual real gross output for each
industry by dividing the nominal gross output by each
industry’s shipments deflator, also provided by the NBER
Manufacturing and Productivity database. We used the
first-difference of the natural log of real gross output in the
R&D model as the industry demand growth variable (Del-
ta_output). For the patent model, we used the natural log of
the industry’s real gross output as a measure of industry
demand (ln Output).

Effectiveness of patent protection. The CMS survey
asks the respondents the percentage of product and process
innovations for which patenting was effective in protecting
their firms’ competitive advantage associated with those
innovations. Responses fall into five mutually exclusive
categories—< 10%, 10–40%, 41–60%, 61–90%, and >
90%—for product and process innovations separately. Fol-
lowing Arora and Ceccagnoli (2006), we constructed a
patent effectiveness measure by computing a weighted
average of the product and process scores, weighted by the
percentage of R&D spent on product and process innova-
tions. We averaged these scores at the industry level to con-
struct the industry-level measure of patent effectiveness
(Patent Effectiveness). Higher values of the measure indi-
cate greater patent protection effectiveness in the industry,
as perceived by the R&D managers based on their own
experience with patenting, product introduction, and imita-
tion by rivals. This industry-level measure from the same
survey data has been used in other studies to investigate the
relationship between the effectiveness of patent protection
and licensing propensity, and to estimate returns to patent
protections (Arora & Ceccagnoli, 2006; Arora, Ceccagnoli,

& Cohen, 2008). To alleviate reporting bias concerns pre-
sent with any self-reported measures, Arora et al. (2008)
and Arora and Ceccagnoli (2006) use instrumental variables
approach to further validate the measure. Additionally,
Arora et al. (2008) provide an analysis of the correlation of
the reported patent effectiveness with reported uses of
patents and confirm that the reported patent effectiveness
reflects the respondents’ perceived net benefits of patenting,
notably the prevention of copying.

Rate of obsolescence. The CMS asks respondents to
report the speed with which new product and process inno-
vations are introduced in the focal industry. The lab-level
survey responses indicate a categorical response for the
speed of product (and process) innovations, ranging from
Very Slowly to Very Rapidly, with Moderately in the mid-
dle. After coding each of the five responses numerically on
a scale of 1 to 5 (with 1 being Very Slowly), we calculated
a weighted average response for each lab with weights
equal to the percentage of R&D spending reported for pro-
duct and process innovation. Then we averaged these
numerical scores at the industry level and constructed a
measure of the average reported pace of obsolescence (Obs)
in the industry.

Within an industry, lab-level responses to the survey
questions obviously vary. Figure 1 provides a histogram of
(weighted average) lab-level responses for an industry clas-
sified as having a relatively slow rate of obsolescence, SIC
351: Engines and Turbines. Figure 2 provides the histogram
of responses for an industry classified as having a relatively
fast rate of obsolescence, SIC 366: Communications Equip-
ment. In both cases, there is some dispersion of responses,
but the large majority of responses are consistent with the
aggregate industry classification. These survey responses
are consistent with industry analyst conclusions with regard
to the rate of technological advance in these industries. An
IBISWorld industry report for the Engine and Turbine

FIGURE 1.—DISPERSION OF SURVEY RESPONSES FOR A SLOW

OBSOLESCENCE INDUSTRY
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industry in the United States concludes that the industry is
mature and characterized by established technology and
processes (Hamilton, 2010). In contrast, the industry report
on the Communication Equipment Manufacturing industry
states that the industry is characterized by technological
innovation and ‘‘rapid product introduction’’ (Waterman,
2012, p. 13).

Firm-level controls. In the R&D model, we controlled
for firm’s balance sheet items. Following Barlevy (2007),
we included the following first-differenced natural logs of
firm-level financial variables from Compustat: one-period-
lagged and contemporaneous cash flow before R&D expen-
ditures (Delta_Cash Flow),7 contemporaneous and one-per-
iod-lagged measures of total assets (Delta_Total Assets),
total liabilities (Delta_Total Liabilities), long-term and
short-term debt (Delta_LT Debt and Delta_ST Debt), and
capital stock (Delta_PPE).

In the patent model, we controlled for the firm’s invest-
ment in R&D using the one-period-lagged natural log of
R&D spending (ln R&D) (Blundell, Griffith, & Windmei-
jer, 2002; Hall et al., 1986); (Arora et al., 2008; Pakes &
Griliches, 1980; Scherer, 1983). We controlled for the size
of the company using the log of the total number of firm
employees (ln EMP). We used the one-period-lagged nat-
ural log of firm plant, property, and equipment value to con-
trol for asset intensity (ln PPE), and we controlled for the
impact of annual sales on patenting by including the one-
period-lagged natural log of sales (ln SALES).

External financing. In both R&D and patent models,
we controlled for industry dependence on external finan-
cing. Some industries rely on external financing more than
their counterparts and are therefore more sensitive to fluc-

tuations in the availability of external funds; this could
directly affect firms’ level of R&D spending and innovative
output. Following Rajan and Zingales (1998), we con-
structed an industry-level measure of dependency on exter-
nal financing by taking all Compustat firms in the years of
our sample and calculating the total external funds needed
to finance each firm’s investments.8 This sum, divided by
the firm’s total capital expenditures over the sample years,
resulted in a ratio indicating a firm’s level of dependence
on external financing. Negative values indicate the avail-
ability of internal cash, and positive values indicate the
need to finance investments externally. To obtain an indus-
try-level measure of external financing dependence, we
took the median value of the ratio for all firms in each
three-digit SIC category (External Financing).

Time trends. We used year dummy variables to account
for common time trends over the period 1975 to 2002,
including broad technological changes (such as the growing
importance of computing in R&D) and changes to patent
policy that affected all firms. These indicators will also
absorb any common changes in output across industries. If
the business cycle of all industries is highly correlated, so
that industry output grows and declines together across
industries, these year indicators may leave little explanatory
power for the industry-level output measure. We examine
this empirically in our results.

B. Descriptive Statistics

Table 2 provides summary statistics for the key variables
used in the analyses, and table 3 contains the correlations.
The patent equation was estimated using a data set of
48,477 firm-year observations for 4,029 firms. The sample
used for estimating the R&D equation contained 71,264
firm-year observations for 7,731 firms. All of the key vari-
ables show significant variation.

On average, firms in the sample applied for fourteen
patents per year, but the median number of patents was one,
indicating that many firms may not patent every year. Firm
R&D spending fluctuations also varied. While on average
firms change their R&D spending levels very little from
year to year, many firms adjusted their annual R&D spend-
ing up and down by large amounts. The size of firms in the
sample also varied significantly, with a median of 881
employees and observations containing up to 877,000
employees. The average rate of obsolescence in our sample
is about 3, which corresponds to the rate of new product

FIGURE 2.—DISPERSION OF SURVEY RESPONSES FOR A FAST

OBSOLESCENCE INDUSTRY

7 We constructed our variable for cash flow before R&D expenditures
by adding the depreciation and amortization (DP) and income before
extraordinary items (IB) reported in Compustat.

8 Total external funds needed is equal to total capital expenditures
minus net cash flow from operations, which is calculated by adding
decreases in inventories, decreases in account receivables, and increases
in account payables to cash flow from operations. Note that these items
are available for cash flow statements with format codes 1, 2, or 3. For
format code 7, we calculated the sum of income before extraordinary
items, depreciation and amortization, deferred taxes, equity in net loss/
earnings, sale of property, plant and equipment and investments/gain
(loss), and funds from operations/other.
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introductions to being rated as Moderately. Industries with
the lowest rate of obsolescence were Asphalt Paving and
Roofing Materials (SIC 295) with a score of 1.56, Pulp
Mills (SIC 261) with 1.80, and Engines and Turbines (SIC
351) with 2.23. Industries in which respondents reported
relatively fast rates of obsolescence included Computer and
Office Equipment (SIC 357), with a score of 4; Communi-
cations Equipment (SIC 366), with 3.25; and Meat Products
(SIC 201) with a score of 3.14. The patent effectiveness
measure ranges from 5% to 82%, indicating a wide varia-
tion of patent protection strength across industries. Among
the industries that obtained a higher patent effectiveness
were Transportation Equipment (SIC 379) with 82%, and
Pharmaceuticals (SIC 283) and Medical Devices (SIC 384),
each with 69%. Industries that obtained the lowest patent
effectiveness score of 5% were Cigarettes (SIC 211), Tex-
tiles (SIC 239), and Periodicals and Newspapers (SIC 271,
272).

V. Empirical Results

A. Results for Innovation Model

Table 4 reports the results from estimations of the patent
models. The first column reports the results of estimating a
model with control variables and the demand measure but
not lagged R&D. The results confirm that innovation, as
measured by patented inventions, was procyclical. It is pos-
sible that this pattern could be due entirely to a procyclical

pattern of R&D investments and immediate patenting, as in
Barlevy’s model. The second column reports results con-
trolling for one- and two-year lagged firm R&D investment.
The estimated coefficient on (one-year) lagged R&D invest-
ments is positive and highly significant, indicating that
R&D and patenting are highly correlated over time. How-
ever, the magnitude of the estimated coefficient on output
was only slightly reduced by the addition of the R&D con-
trol, suggesting that the procyclicality of innovation is at
least partly due to factors other than the underlying timing
of R&D investments. In order to control for common
effects of business cycles across industries, we included
year dummies in the third model. This reduced the esti-
mated coefficient on the output variable only slightly, con-
sistent with the small impact of common time trends in the
R&D equation discussed below.

The fourth column reports a model including the interac-
tion of an industry’s patent effectiveness measure with its
industry output variable (Output � Patent Effectiveness).
Hypothesis 1 predicted that firms in industries with stronger
patent protection would not be as sensitive to threats of imi-
tation and would therefore have a weaker incentive to match
the timing of innovation to periods of high demand. Results
show that the number of innovations generated by firms in
industries where patents afford more effective protection
against imitators fluctuated less with the business cycle, con-
sistent with this prediction. When patent effectiveness was
at its (in-sample) maximum, the number of patented innova-
tions did not vary with changes in industry output.

TABLE 2.—DESCRIPTIVE STATISTICS

N N (firms) Mean Median SD Minimum Maximum

A. Patenting Estimation
Endogenous Variables

NumPats 48,477 4,029 14.65 1 76.54 0 2,655
Explanatory Variables

ln R&D (lag) 48,477 4,029 4.84 5.46 3.29 0 13.76
ln Sales (lag) 48,477 4,029 9.12 9.41 3.10 0 16.84
ln Emp (lag) 48,477 4,029 1.07 0.61 1.20 0 6.78
ln PPE (lag) 48,477 4,029 7.72 7.77 2.94 0 16.08
ln Output 48,477 4,029 8.99 8.81 1.09 5.79 12.37
Obsolescence 48,477 4,029 2.85 2.87 0.35 2 4
Patent effectiveness 48,477 4,029 0.46 0.45 0.15 0.05 0.82
External financing 48,477 4,029 0.55 �0.10 1.59 �2.93 4.76
Year 1975 2002

B. R&D Estimation
Endogenous Variables

Delta_R&D 71,264 7,731 0.11 0 1.09 �11.69 12.94
Explanatory Variables

Delta_Cash flow 71,264 7,731 0.01 0.02 0.51 �8.53 8.30
Delta_Total assets 71,264 7,731 0.18 0.03 1.33 �14.64 14.57
Delta_Total liabilities 71,264 7,731 0.18 0.02 1.31 �13.93 14.29
Delta_LT debt 71,264 7,731 0.12 �0.01 1.74 �12.95 13.64
Delta_ST debt 71,264 7,731 0.09 0 1.62 �13.99 14.22
Delta_Capital stock 71,264 7,731 0.15 0.01 1.17 �13.97 14.00
Delta_R&D_lag 71,264 7,731 0.14 0 1.10 �11.69 12.94
Delta_Output 71,264 7,731 0.04 0.04 0.11 �0.53 1.12
Obsolescence 71,264 7,731 2.84 2.87 0.35 1.56 4
Patent effectiveness 71,264 7,731 0.44 0.44 0.15 0.05 0.82
External financing 71,264 7,731 0.33 �0.14 1.39 �2.93 4.76
Year 1975 2002
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Results reported in column 5 test hypothesis 3, which
predicted that firms in industries with faster obsolescence
rates would match innovations to periods of high demand
less than firms in other industries. The coefficient on the
interaction (Output � Obsolescence) is negative and signifi-
cant, suggesting smaller fluctuations in patented innova-
tions with changes in industry output for firms in industries
with faster obsolescence rates than for firms in other indus-
tries. However, the coefficient is not significant in the full
model, reported in column 6. This is consistent with firms
potentially concentrating R&D in periods of higher demand
but not delaying innovation, when obsolescence is faster.

In column 7, adding a control for external financing
dependency interacted with demand changes (Output �
External financing) strengthened the key result: patenting
was less sensitive to changes in demand in industries with
stronger patent protection. The final column presents the
results without the year fixed effects, which reduces the

magnitude and significance level of the primary result.
Although still negative, the coefficient on the interaction is
significant at only the 7% level. This is not surprising, as
the variation identifying the estimation is across industries,
and the year indicators capture common variation across
time that without these indicators swamps some of the
cross-industry variation.

B. Results for R&D Model

Table 5 presents the results of estimating the R&D
model. The first column reports a specification that included
the control variables and the measure of output growth but
excluded year indicators. These results confirm the procy-
clicality of R&D investment: the coefficient on the output
variable is positive and significant at the 0.1% level. The
estimation reported in the second column replicated this
model, but also included year indicator variables, control-

TABLE 5.—OLS ESTIMATES OF GROWTH IN R&D EXPENDITURES

(1) (2) (3) (4) (5) (6) (7)

Delta_Output 0.211*** 0.280*** 0.202 �0.752** �0.657* �0.581 �0.625
(0.032) (0.035) (0.121) (0.267) (0.299) (0.351) (0.358)

Output � Patent Effectiveness 0.222 �0.109 �0.245 �0.290
(0.303) (0.315) (0.324) (0.315)

Patent Effectiveness 0.175*** 0.186*** 0.107*** 0.106***
(0.025) (0.025) (0.031) (0.032)

Output � Obsolescence 0.325*** 0.309*** 0.295** 0.297**
(0.087) (0.088) (0.103) (0.105)

Obsolescence 0.049*** 0.051*** 0.037** 0.040**
(0.012) (0.013) (0.014) (0.014)

Output � External Financing 0.060 0.085
(0.066) (0.066)

External Financing 0.013** 0.013**
(0.004) (0.004)

Delta_Cash Flow �0.030* �0.027 �0.027 �0.026 �0.025 �0.024 �0.026
(0.015) (0.015) (0.015) (0.015) (0.015) (0.015) (0.015)

Delta_Cash Flow_Lag �0.008 �0.009 �0.008 �0.008 �0.007 �0.006 �0.005
(0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

Delta_Total Assets 0.245*** 0.244*** 0.244*** 0.244*** 0.243*** 0.243*** 0.243***
(0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019)

Delta_Total Assets_Lag 0.085*** 0.084*** 0.083*** 0.083*** 0.082*** 0.081*** 0.081***
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Delta_Total Liabilities 0.073*** 0.073*** 0.073*** 0.074*** 0.074*** 0.074*** 0.073***
(0.017) (0.017) (0.017) (0.017) (0.017) (0.017) (0.017)

Delta_Total Liabilities_Lag �0.074*** �0.074*** �0.073*** �0.074*** �0.073*** �0.073*** �0.073***
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Delta_LT Debt �0.022*** �0.022*** �0.022*** �0.022*** �0.022*** �0.022*** �0.022***
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Delta_LT Debt_Lag �0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Delta_ST Debt �0.001 �0.001 �0.001 �0.001 �0.001 �0.001 �0.001
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Delta_ST Debt_Lag 0.004 0.004 0.004 0.004 0.004 0.004 0.004
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Delta_Capital Stock 0.110*** 0.109*** 0.109*** 0.109*** 0.109*** 0.109*** 0.110***
(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)

Delta_Capital Stock_Lag 0.004 0.005 0.005 0.005 0.006 0.006 0.005
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)

Constant 0.021*** 0.021 �0.053** �0.111** �0.196*** �0.121* �0.142**
(0.003) (0.018) (0.020) (0.039) (0.044) (0.050) (0.049)

Year fixed effects No Yes Yes Yes Yes Yes No
N (observations) 71,264 71,264 71,264 71,264 71,264 71,264 71,264
R2 0.22 0.22 0.22 0.22 0.23 0.23 0.22

The dependent variable is contemporaneous first-difference of natural log of R&D expenditures. The model uses first-differenced financial variables. Robust standard errors, clustered by firm, are in parentheses;
***p < 0.001, **p < 0.01, *p < 0.05.
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ling for common trends that affect firms in all industries.
The estimated procyclicality of R&D was not diminished
by this set of controls, and the fact that the R2 is unchanged
by inclusion suggests that the common year trends do not
have significant explanatory power across industries. Note
that several of the control variables are significant, despite
the fact that there is a high degree of correlation among
these.9

The third column reports the results testing hypothesis 2,
which predicted that R&D investments would be more sen-
sitive to changes in demand in industries with weaker intel-
lectual property protection. While there is some evidence
that the average annual growth in R&D spending is larger
for firms in industries with stronger patent protection, the
estimated coefficient on the interaction of changes in
demand with the indicator for industries with strong patent
effectiveness (Output � Patent Effectiveness) is positive
but not statistically significantly different from 0. This pre-
diction is therefore not supported. However, recall from the
discussion that if one assumes that R&D investments and
innovation can be decoupled from each other, so that a firm
is able to make separate timing decisions for each activity,
the timing of R&D would not be expected to be sensitive to
the threat of imitation.

The fourth column reports the results testing hypothesis
4, which predicted that R&D investments would be more
sensitive to changes in demand in industries with faster
obsolescence rates. This prediction is supported: the inter-
action of changes in demand with the indicator for indus-
tries with faster obsolescence (Output � Obsolescence) is
positive and significant, indicating that R&D investments
were more strongly procyclical in these industries.

The fifth column reports results for the full model, in-
cluding both sets of interactions. The results are not altered
substantially. The sixth column adds to the full model an
industry-level control for reliance on external financing
interacted with changes in demand (Output � External
financing) in order to account for industries that might be
financially constrained to a greater extent during recession-
ary periods. The main results hold. The final column repli-
cates this model without the year fixed effects in order to
examine whether the patterns change; they do not.

Recall that Barlevy’s (2007) model that predicted procy-
clical investments in R&D was based on the anticipated
imitation of an innovation subsequent to its introduction,
and that this imitation could be delayed by delaying R&D
and innovation (which were assumed to be simultaneous).
Our results suggest that when firms anticipate that their
innovations’ profitability will be eroded by faster obsoles-
cence, those firms are more likely to match their R&D
investments to periods of higher demand. The lack of a sig-
nificant moderating effect of patent effectiveness on the

procyclicality of R&D investment is notable. If firms are
able to separate the timing of R&D investments from the
timing of product introductions, as in Shleifer (1986) and
François and Lloyd-Ellis (2003), the timing of R&D would
not be affected by the threat of imitation, because imitation
(unlike obsolescence) can be delayed by delaying product
introduction.

Together the results for R&D investments and innovation
indicate that firms that strategically delay innovation when
the threat of imitation is greater due to weaker IP protec-
tion,10 and they shift the timing of R&D investments to
meet higher demand in order to avoid inventions becoming
obsolete before capturing rents. This analysis provides evi-
dence that firms’ decisions about the timing of R&D and
innovation are discrete, with the potential for both optimiz-
ing the timing of R&D activities and strategically delaying
innovations to maximize profits.

VI. Robustness to Alternate Measure of Obsolescence

Our survey-based measure of the rate of obsolescence in
the industry is new to the literature. Although it is consis-
tent with analyst reports, as noted above, its novelty dictates
further validity testing. Existing studies provide an alternate
measure of the ‘‘technology cycle time’’ in an industry.
Narin (1994) defines the technology cycle time as the med-
ian age of the patents cited in other patents (the length of
time between the cited patent and the focal citing patent).11

As an example, he states that electronics, which is a ‘‘rela-
tively fast moving area,’’ has a much shorter cycle time than
slower-moving areas such as mechanical areas. In slower
technology-cycle-time industries, patented inventions are
cited more slowly by new patented inventions and citation
persists over a longer period because that initial technology
is not yet obsolete, and therefore is still relevant as prior art.
In contrast, in very fast technology-cycle-time industries,
patented inventions become obsolete more quickly, and
citations to the patented inventions are concentrated in the
couple of years immediately following the invention.

We used the technology cycle time in an industry as an
alternate measure of the pace of technological progress to
validate our survey measure of obsolescence. In order to
avoid endogeneity concerns, we used European (EPO)
granted patents to calculate the technology cycle time for
each industry. We downloaded data (from Thomson Innova-
tion) on all granted European patents in international patent
classes (IPCs) that are related to the SICs in the survey data.

9 The equal and opposite coefficients on liabilities and lagged liabilities
are not a result of colinearity in these variables. The coefficients are very
similar if the model is estimated excluding one or the other measure.

10 In unreported results, we experimented with regressing patents on
R&D spending lagged by up to five years, and these lagged investments
interacted with the measure of patent effectiveness, using a sample of
positive output growth firm-years. We found that longer lags of R&D are
more predictive of current patents in industries with weaker IP protection,
consistent with the idea that firms will have more incentive to delay inno-
vation implementation (evidenced by longer lags between R&D and inno-
vation) when imitation threat is greater.

11 Similarly, Trajtenberg et al. (1997) describe the average backward
citation lag of a patent as a measure of the remoteness in time of the
patent, where a longer lag corresponds to drawing from older sources.
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For each patent, we collected data on all cited patents and
calculated the backward citation lag as the time between
cited and citing patent. We calculated the average backward
citation lag for patents in each international patent class
(IPC), and mapped the IPCs to the SICs in our sample using
the concordance developed by Silverman.12 This process
provides the technology cycle time (the average backward
citation lag) for 102 of the 105 SICs in our sample.

The range of the average backward citation lag was three
to six years. To make interpretation easier, we inverted this
measure13 so that large values corresponded to shorter
backward citation lags, consistent with a higher value from
the survey responses, indicating faster introduction of inno-
vation. The correlation between the (inverted) technology
cycle time and the continuous measure for obsolescence
from the survey is 0.44 and is significant at better than the
1% level. The substantial correlation between these two
measures provides some confidence that the survey measure
is in fact reflecting the rate of technological change in an
industry.

To test the robustness of our results to this alternate mea-
sure, we replaced our survey measure of obsolescence with
the technology cycle time in our estimations. The results
with this alternate are completely consistent with the results
using the survey measure described above, with the esti-
mated coefficients nearly identical in terms of magnitude
and significance.

VII. Limitations

This paper provides compelling new evidence about the
demand-side mechanism driving the procyclicality of R&D
and innovation, but it is not without limitations. First and
foremost, our measure of innovation is the number of patent
applications a firm generated in each year. While applying
for a patent is a good indicator that a firm intends to
develop its invention into a commercializable innovation, it
remains removed from the decision to introduce the innova-
tion in the marketplace. It is possible that firms would not
delay patenting an invention but would delay its introduc-
tion to match demand patterns. In that sense, the patterns
we document here may significantly understate the degree
to which firms delay innovation in response to fluctuations
in demand. However, because the theoretical predictions
about the impact of imitation on the timing of innovation
are driven by an invention’s disclosure to imitative rivals
(hence facilitating its imitation) and because patenting
requires disclosure, we believe using patent dates to mea-
sure innovation timing is justifiable.

The second limitation is that we treat the industry condi-
tions we consider—the rate of obsolescence and the threat
of imitation—as exogenous and constant over the sample

period. In reality, industry conditions are the products of
complex competitive dynamics among industry rivals and
are driven in part by the anticipation of and response to any
single firm’s R&D and innovation strategies. The survey
data we used to create measures of obsolescence and the
threat of imitation are based on R&D managers’ impres-
sions of industry conditions and therefore include the
expected competitive dynamics in the industry. Neverthe-
less, we used static measures recorded in the middle of the
time period studied, which will fail to capture changes in
these conditions over time. We explored this empirically by
reestimating our models using only the observations in
years close to the survey data (including six years before
and six years after the survey) and found results to be nearly
identical to those reported here.

VIII. Conclusion

This paper provides an empirical analysis of the theories
describing the demand-driven explanations for the procycli-
cality of R&D spending and innovation. We drew on this
theory to make testable predictions about when procyclical
innovation patterns will rise or wane. We tested for these
patterns in a firm-level data set comprising thousands of
firms across 100 manufacturing industries. In order to eval-
uate the competing predictions derived from different theo-
retical assumptions, we examined the procyclical patterns
in R&D spending and patented innovations separately.

Our results are consistent with the expected procyclical
patterns of R&D spending and innovation. We show that
R&D spending was more procyclical in industries that
report faster rates of obsolescence, but not in industries that
report weaker patent protection. Innovation, meanwhile,
was more procyclical in industries that report weaker patent
protection, but not in industries that report faster obsoles-
cence. These results are broadly supportive of the theoreti-
cal literature that predicts innovating firms will shift the
timing of innovation to match market demand. They also
support the feasibility of decoupling the timing of R&D
investments from the timing of innovation. In doing this,
we discovered that innovation timing, and not the timing of
R&D investment, is affected by the threat of imitation by
rivals.

The timing of R&D investment is affected by the rate of
obsolescence. When the rate of obsolescence is low, so that
inventions do not lose too much value when their develop-
ment and commercialization is delayed, firms are able to
make R&D investments in recessionary periods but with-
hold commercialization until demand increases. However,
when the rate of obsolescence is high, firms move R&D
activities to periods of higher demand and introduce inno-
vations more closely in time with the R&D investment.
Hence, we see more procyclical R&D spending when there
is faster obsolescence. Obsolescence does not systemati-
cally alter the procyclical timing of innovation: in faster-
obsolescence industries, firms have little incentive to delay

12 Concordance and support files available at http://www-2.rotman.utor
onto.ca/~silverman/ipcsic/documentation_IPC-SIC_concordance.htm

13 We inverted the variable by subtracting the value for each industry
from 9.
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implementation of innovations, so the timing of innovation
mirrors the timing of R&D investment, and in slow-obso-
lescence industries, firms select when to introduce innova-
tions to maximize rents, as a function of demand cycles and
the threat of imitation.

Effective patent protection, allowing firms to capture the
rents from innovation, provides a moderating influence on
the strategic delay of innovation to match periods of high
demand. When patents are more effective, firms have less
incentive to delay innovation until higher-demand periods
because the innovation can be introduced earlier and still
capture profits during the subsequent high-demand period.
Hence, we see evidence that innovation is less procyclical
when patent protection is more effective at allowing firms
to appropriate the gains from innovation.

One of the key insights Barlevy (2007) emphasized is
that profit-maximizing firms will not shift R&D to take
advantage of lower opportunity costs in downturns to the
extent that it is socially optimal to do so. He theorized that
this has the effect of making negative shocks more persis-
tent than they would otherwise be and of making growth
more costly to attain, because R&D investments are made
at a time when the opportunity cost is higher. These effects
combine to increase the welfare costs of macroeconomic
shocks, and so Barlevy (2007) suggested that there may be
a role for greater R&D subsidies in downturns to counteract
the incentives to shift R&D to boom periods. Our results
suggest that these subsidies might be targeted to the firms
most likely to delay R&D investment: those in industries
with faster rates of obsolescence. In addition, policies that
strengthen intellectual property protection could reduce the
strategic delay of innovations, potentially increasing con-
sumption in periods of lower demand and facilitating
growth and recovery.
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